范玉千
导师简介——范玉千
2009年06月,毕业于哈尔滨工程大学通信工程专业获工学学士
2011年06月,毕业于武汉大学电子与通信工程专业获工学硕士
2019年12月,毕业于中山大学力学(智能交通工程)专业获工学博士
2022年05月,中山大学计算机科学与技术博士后流动站出站(博士后)
一、从事专业及研究方向:
从事专业:计算机科学与技术、人工智能、电子信息、智能物联网、
主要研究方向:新能源汽车动力电源系统智能控制与优化设计;锂电池热管理与热安全;锂离子电池电量估计、寿命预测、健康状态评估等深度学习在新能源汽车领域的应用。
二、工作经历:
2025.02 - 至今,中山大学访问学者
2024.11 - 至今,河南省“科技副总”
2023.10 - 至今,新乡市智能电池数字孪生技术重点实验室,主任
2022.06 - 至今,河南科技学院,校聘教授
2022.02 - 至今,东莞中山大学新能源汽车研究中心,副主任/研究员
2014.01 - 2016.07,河南电池研究院有限公司
2011.07 - 2013.12,南京中兴新软件有限公司
三、科研成果:
(一)承担主要课题:
1.主持河南省科技攻关项目“面向快充应用场景的动力电池健康状态在线评估关键技术研发与应用”(2024.01-2025.03),结题,10万。
2.主持企业委托横向项目“面向储能场景的电池健康状态高精度预测技术开发”(2024.07-2015.12),在研,20万。
3.主持河南科技学院高层次人才引育计划项目“锂离子电池全生命周期安全衰退性能评估模型研究”(2022.06-2025.06),在研,30万。
4.主持企业委托横向项目“基于深度学习的锂电池健康状态在线预测技术研发”(2023.07-2023.11),结题,10万 。
5.主持企业委托横向项目“新能源汽车动力电池系统模拟系统研发”(2022.08-2023.07),结题,6万
6. 主持2023年广东省重大专项项目课题“全寿命周期电池系统性能测试及无线电池管理系统开发”(2023.01-2025.12),在研。
7. 主持企业委托横向项目“动力电池及系统应用”(2020.07-2021.06),结题,18万
8. 参与深圳市自然科学基金项目“动力锂电池正反脉冲快速充电策略实时优化”(2022.03-今),在研
9. 参与广东省自然科学基金项目“基于梯级利用的退役锂电池热失控行为及在线监测预警技术”(2021.01-2023.01),结题
10. 参与2019年广东省重大专项项目“高性能电动汽车动力系统总成关键技术”(2019.01-2021.12),结题
11. 参与2017年广东省重大专项项目“高比能高镍三元锂离子动力电池系统研发及产业化”(2017.03-2020.02),结题
12. 参与2016年广东省重大专项项目“轻量化、高安全的结构化动力电池系统的研发与产业化”(2016.01-2018.12),结题
(二)近年发表的主要论文:
[1] Y. Fan, Y. Bao, C. Ling, Y. Chu, X. Tan*, S. Yang*. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155: 96-109.
(第一作者,中科院大类2区TOP,影响因子: 5.295,ESI高被引论文)
[2] Y. Fan*, J. Zhao, Y. Li, J. Wang, F. Yang, X. Tan*, Integrated framework for battery cell state-of-health estimation in complex modules: Combining current distribution analysis and novel terminal voltage estimation L-EKF modeling[J]. Energy, 2025, 314: 134258.
(第一作者,中科院大类1区TOP,IF: 9.0002)
[3] Y. Fan, C. Yan, X. Wu*, Y. Li, W. Dou, G. Gao, P. Zhang, Q. Guan, X. Tan. Mechanical stress-based state-of-charge estimation for lithium-ion batteries via deep learning techniques[J]. Energy, 2025, 326: 136216.
(第一作者,中科院大类1区TOP,IF: 9.0002)
[4] Y. Fan, P. Lyu, D. Zhan, K. Ouyang, X. Tan*, J. Li. Surrogate Model-based Multi-objective Design Optimization for Air-cooled Battery Thermal Management Systems[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 1031-1047.
(第一作者,中科院大类1区TOP,影响因子: 8.3914)
[5] Y. Fan*, Y. Li, Y. Yuan, J. Wang, W. Zhang, G. Gao, F. Yang*, X. Tan. A spatiotemporal graph attention network-based SOH estimation method for lithium batteries in cross-temperature scenarios[J]. Journal of Energy Storage, 2025, 123: 116752.
(第一作者,中科院大类2区,IF: 8.9071)
[6] Y. Fan*, Y. Li, J. Zhao, L. Wang, C. Yan, X. Wu, J. Wang, G. Gao, Z. Ren, S. Li, L. Wei, X. Tan. A novel lithium-ion battery state-of-health estimation method for fast-charging scenarios based on an improved multi-feature extraction and bagging temporal attention network[J]. Journal of Energy Storage, 2024, 99: 113396.
(第一作者,中科院大类2区,IF: 8.9071)
[7] Y. Fan, H. Wang, Y, Zheng, J, Zhao, H. Wu, K. Wang, S. Yang, X. Tan*. A novel state-of-health estimation method for fast charging lithium-ion batteriesbased on an adversarial encoder network[J]. Journal of Energy Storage, 2023, 63: 107087.
(第一作者,中科院大类2区,影响因子: 8.9071)
[8] Y. Fan, X. Zuo, D. Zhan, J. Zhao, G. Zhang, H. Wang*, K. Wang, S. Yang, X. Tan*. A novel control strategy for active battery thermal management systems based on dynamic programming and a genetic algorithm[J]. Applied Thermal Engineering, 2023, 233: 121113.
(第一作者,中科院大类2区TOP,IF: 6.1004)
[9] Y. Fan, D. Zhan, X. Tan*, P. Lyu, J. Rao. Optimization of cooling strategies for an electric vehicle in high-temperature environment[J]. Applied Thermal Engineering, 2021, 195: 117088.
(第一作者,中科院大类2区TOP,影响因子: 5.295)
[10] Y. Fan*, Y. Li, J. Zhao, L. Wang, C. Yan, X. Wu, P. Zhang, J. Wang, G. Gao, L. Wei*. Online State-of-Health Estimation for Fast-Charging Lithium-Ion Batteries Based on a Transformer-Long Short-Term Memory Neural Network[J]. Batteries, 2023, 9(11): 539.
(第一作者,中科院大类3区,IF: 6.1004)
[11] S. Yang, H. Xie, S. Liu, Y. Fan*, X. Tan*. A method for estimating the SOH of lithium-ion batteries under complex charging conditions using dilated residual temporal encoding[J]. Energy, 2025, 328: 136572.
(通讯作者,中科院大类1区TOP,IF: 9.0002)
[12] X. Tan, D. Zhan, P. Lyu, J. Rao, Y. Fan*. Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression[J]. Journal of Power Sources, 2021, 484:229233.
(通讯作者,中科院大类1区TOP,影响因子: 9.127)
[13] X. Wu, C. Yan, Y. Li, L. Wang, J. Wang, G. Gao, X, Wang, J. Du, G. Yuan, Y. Fan*. A multifeature fusion approach for Lithium-ion battery state of charge estimation based on mechanical stress via the BiMamba-X model[J]. Journal of Energy Storage, 2024, 125: 116976.
(通讯作者,中科院大类2区,IF: 8.9071)
[14] L. Wei, Y. Sun, Q. Diao, H. Xu, X. Tan*, Y. Fan*. State of Health Estimation of Lithium-Ion Batteries Based on Stacked-LSTM Transfer Learning With Bayesian Optimization and Multiple Features. IEEE Sensors Journal, 2024, 24(22): 37607-37619.
(通讯作者,中科院大类2区,影响因子: 4.2997)
[15] H. Wang, J. Li, X. Liu, J. Rao, Y. Fan,*, X. Tan. Online state of health estimation for lithium-ion batteries based on a dual self-attention multivariate time series prediction network[J]. Energy Reports, 2022, 8: 8953-8964.
(通讯作者,中科院大类2区,影响因子: 6.870)
[16] X. Tan, P. Lyu, Y. Fan*, D. Zhan, J. Rao, K. Ouyang. Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion battery pack in hydrofluoroether[J]. Applied Thermal Engineering, 2021, 196: 117279.
(通讯作者,中科院大类2区TOP,影响因子: 5.295)
[17] X. Tan, H. Zhuang, X. Song, H. Wang, Y. Fan*. A novel intelligent health prediction method for lithium-ion batteries within a variable voltage range[J]. International Journal of Energy Research. 2022, 46(15): 20985-21000.
(通讯作者,中科院大类2区TOP,影响因子: 4.672)
[18] X. Tan, X. Liu, H. Wang, Y. Fan*, G. Feng. Intelligent online health estimation for lithium-ion batteries based on a parallel attention network combining multivariate time series[J]. Frontiers in Energy Research, 2022, 10: 844985.
(通讯作者,中科院大类3区,影响因子: 4.008)
[19] C. Yan, X. Wu, Y. Yuan, Y. Xie, J. Wang, G. Gao, Y. Fan*. Experimental data simulating lithium battery charging and discharging tests under different external constraint pressure conditions[J]. Data in Brief, 2024, 55: 110616.
(通讯作者,中科院大类4区,影响因子: 1.200)
[20] Y. Bao, Y. Fan, Y. Chu, C. Ling, X. Tan*, S. Yang. Experimental and numerical study on the thermal and energy management of a fast charging lithium-ion battery pack with air cooling[J]. Journal of Energy Engineering, 2019, 145(6): 04019030.
[21] K. Ouyang, Y. Fan, M. Yazdi, W. Peng*. Data-driven Based Internal Temperature Estimation for Lithium-ion Battery Under Variant SoC via Electrochemcal Impedance Spectroscopy. Energy Technology, 2022, 10(3): 2100910.
[22] S.Yang, C. Ling, Y. Fan, Y. Yang, X. Tan*, Hongyu Dong. A review of lithium-ion battery thermal management system strategies and the evaluate criteria. International Journal of Electrochemical Science, 2019, 14: 6077-6107.
[23] X. Tan, J. Qiu, J. Li*, Y. Fan, J. Liu. Lithium Plating as Limiting Phenomena for Estimating Safety during Lithium-Ion Battery Charging. International Journal of Electrochemical Science, 2020, 15: 9233-9244.
[24] X. Tan, Y. Tan, D. Zhan, Z.Yu, Y. Fan, J. Qiu, J. Li*. Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance. IEEE Access, 2020, 8: 56811-56822.
[25] Y. Sun, Q. Diao, H. Xu, X. Tan, Y. Fan, L. Wei*. State of health estimation for lithium-ion batteries based on partial charging curve reconstruction[J]. IEEE Transactions on Power Electronics, 2025, 40(4): 6107-6118.
[26] L. Wu*, X. Wei , C. Lin*, Z. Huang, Y. Fan, C. Liu, S. Fang. Battery SOC estimation with physics-constrained BiLSTM under different external pressures and temperatures. Journal of Energy Storage, 2025, 117: 116205.
[27] Y. Sun, H. Xie, Q. Diao, H. Xu, X. Tan, Y. Fan, & Wei, L. A Novel SOH Estimation Method With Attentional Feature Fusion Considering Differential Temperature Features for Lithium-Ion Batteries. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-11.
(三)近年申请的发明专利:
[1] 一种基于深度强化学习的锂电池高安全快速充电方法(202411650400.7) (第一发明人,已授权)
[2] 适用于光储充放检宽温域场景的锂电池状态智能估算方法(202411260033.X) (第一发明人,已授权)
[3] 基于机械应力特性的锂电池SOC智能在线估算方法(202411351875.6) (第一发明人,已授权)
[4] 一种用于电池系统内单体电池的端电压预测方法(202410145658.5) (第一发明人,已授权)
[5] 一种用于电池系统内单体电池的健康状态估计方法(202410145590.0) (第一发明人,已授权)
[6] 基于时序变换记忆网络的锂离子电池健康状态估计方法(202410263144.X) (第一发明人,已授权)
[7] 一种基于图卷积的锂离子电池健康状态评估方法(202410669970.4) (第一发明人,已授权)
[8] 一种用于锂电池健康状态估算的预测网络的建模方法(202310565003.9) (第一发明人,已授权)
[9] 一种基于对抗编码器网络的锂离子电池健康状态估计方法(202310565004.3) (第一发明人,已授权)
[10] 一种基于集成学习的锂电池析锂状态在线监控方法(202211381818.3) (第一发明人,已授权)
[11] 基于动态规划的锂电池无析锂快速充电方法及系统(202210175682.4) (第一发明人,已授权)
[12] 一种应用于电动汽车动力总成的新型热管理装置(202010885353.X) (第一发明人,已授权)
[13] 一种基于动态参数识别的电池健康状态估算方法(202011116879.8) (第一发明人,已授权)
[14] 一种动力电池主动热管理系统及控制方法(202011285697.3) (第一发明人,已授权)
[15] 基于多空间卷积门控网络的钠离子电池健康状态估计方法(202510473053.3) (第一发明人,已公开)
[16] 面向储能场景的准固态电池SOH-SOC联合估计方法(202510473000.1) (第一发明人,已公开)
[17] 一种储能场景下钠离子电池健康状态估计方法(202411794467.8) (第一发明人,已公开)
(四)近年出版的学术著作:
[1] X. Tan, A. Vezzini, Y. Fan, N. Khare, Y. Xu, L. Wei. Battery Management System and its Applications (ISBN: 9781119154006), Wiley, 2022.(英文技术专著)
四、主讲课程:
本科生:面向对象程序设计、IT专业英语、文献检索与科技写作、ZigBee与无线传感网络
研究生:科研伦理与学术规范
五、成果鉴定:
2021年7月,“锂离子动力电池系统快速仿真验证平台开发及其应用”成果(排名第三),经科技成果鉴定为国内领先水平,部分指标国际先进。
六、常用邮箱:
fanyuqian@126.com
七、主要兼职:
担任Journal of Power Sources、International Journal of Energy Research、IEEE Access、Journal of Thermal Science and Engineering Applications、Journal of The Electrochemical Society、Energies、Batteries、Sustainability等国际期刊审稿人。
中国电工技术学会高级会员
中国电工技术学会电动汽车充换电系统与试验专业委员会委员
中国汽车工程学会会员
八、对所选学生的要求:
1.态度认真,品行端正,身心健康, 有强烈的上进心和责任感。
2. 有一定的编程能力,熟悉Matlab、Python等。(同等条件优先)
3. 有一定的数学(建模)基础。(同等条件优先)
4. 有一定英语阅读和写作能力。(同等条件优先)
5. 有良好的语言文字、表达和沟通交流能力;较好的逻辑思维能力。
【关闭】